The science of Sad: understanding the causes of ‘winter depression’
For many of us in the UK, the annual ritual of putting the clocks back for daylight saving time can be accompanied by a distinct feeling of winter blues as autumn well and truly beds in. This might be felt as a lack of energy, reduced enjoyment in activities and a need for more sleep than normal. But for around 6% of the UK population and between 2-8% of people in other higher latitude countries such as Canada, Denmark and Sweden, these symptoms are so severe that these people are unable to work or function normally. They suffer from a particular form of major depression, triggered by changes in the seasons, called seasonal affective disorder or Sad.
In addition to depressive episodes, Sad is characterised by various symptoms including chronic oversleeping and extreme carbohydrate cravings that lead to weight gain. As this is the opposite to major depressive disorder where patients suffer from disrupted sleep and loss of appetite, Sad has sometimes been mistakenly thought of as a “lighter” version of depression, but in reality it is simply a different version of the same illness. “People who truly have Sad are just as ill as people with major depressive disorder,” says Brenda McMahon, a psychiatry researcher at the University of Copenhagen. “They will have non-seasonal depressive episodes, but the seasonal trigger is the most common. However it’s important to remember that this condition is a spectrum and there are a lot more people who have what we call sub-syndromal Sad.”
Around 10-15% of the population has sub-syndromal Sad. These individuals struggle through autumn and winter and suffer from many of the same symptoms but they do not have clinical depression. And in the northern hemisphere, as many as one in three of us may suffer from “winter blues” where we feel flat or disinterested in things and regularly fatigued.
One theory for why this condition exists is related to evolution. Around 80% of Sad sufferers are women, particularly those in early adulthood. In older women, the prevalence of Sad goes down and some researchers believe that this pattern is linked to the behavioural cycles of our ancient ancestors. “Because it affects such a large proportion of the population in a mild to moderate form, a lot of people in the field do feel that Sad is a remnant from our past, relating to energy conservation,” says Robert Levitan, a professor at the University of Toronto. “Ten thousand years ago, during the ice age, this biological tendency to slow down during the wintertime was useful, especially for women of reproductive age because pregnancy is very energy-intensive. But now we have a 24-hour society, we’re expected to be active all the time and it’s a nuisance. However, as to why a small proportion of people experience it so severely that it’s completely disabling, we don’t know.”
There are a variety of biological systems thought to be involved, including some of the major neurotransmitter systems in the brain that are associated with motivation, energy and the organisation of our 24-hour circadian rhythms. “We know that dopamine and norepinephrine play critical roles in terms of how we wake up in the morning and how we energise the brain,” Levitan says. One particular hormone, melatonin, which controls our sleep and wake cycles, is thought to be “phase delayed” in people with severe Sad, meaning it is secreted at the wrong times of the day.
Another system of particular interest relates to serotonin, a neurotransmitter that regulates anxiety, happiness and mood. Increasing evidence from various imaging and rodent studies suggests that the serotonin system may be directly modulated by light. Natural sunlight comes in a variety of wavelengths, and it is particularly rich in light at the blue end of the spectrum. When cells in the retina, at the back of our eye, are hit by this blue light, they transmit a signal to a little hub in the brain called the suprachiasmatic nucleus that integrates different sensory inputs, controls our circadian rhythms, and is connected to another hub called the raphe nuclei in the brain stem, which is the origin of all serotonin neurons throughout the brain. When there is less light in the wintertime, this network is not activated enough. In especially susceptible individuals, levels of serotonin in the brain are reduced to such an extent that it increases the likelihood of a depressive episode.
Read More: http://snip.ly/25gi4#https://www.theguardian.com/lifeandstyle/2017/oct/30/sad-winter-depression-seasonal-affective-disorder
Click here To join us for more information, get in touch
Labels: 21 cfr part 11 compliance checklist, 95% offer on a special deal 2017, A Tour of the FDA, accounts, Advertise on Globalcompliancepanel, analytical instruments
0 Comments:
Post a Comment
Subscribe to Post Comments [Atom]
<< Home